Andreas M. Hinz

Orcid: 0000-0002-9558-5966

According to our database1, Andreas M. Hinz authored at least 19 papers between 1989 and 2022.

Collaborative distances:

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2022
The Dudeney-Stockmeyer Conjecture.
Discret. Appl. Math., 2022

Metric properties of Sierpiński triangle graphs.
Discret. Appl. Math., 2022

The median of Sierpiński graphs.
Discret. Appl. Math., 2022

2020
The Hanoi graph <i>H<sup>3</sup><sub>4</sub></i>.
Discuss. Math. Graph Theory, 2020

2019
A note on the Frame-Stewart conjecture.
Discret. Math. Algorithms Appl., 2019

2018
Power domination in Knödel graphs and Hanoi graphs.
Discuss. Math. Graph Theory, 2018

2017
Open Problems for Hanoi and Sierpiński Graphs.
Electron. Notes Discret. Math., 2017

A survey and classification of Sierpiński-type graphs.
Discret. Appl. Math., 2017

2016
Computational Solution of an Old Tower of Hanoi Problem.
Electron. Notes Discret. Math., 2016

Preface.
Electron. Notes Discret. Math., 2016

2014
An efficient algorithm to determine all shortest paths in Sierpiński graphs.
Discret. Appl. Math., 2014

The Number of Moves of the Largest Disc in Shortest Paths on Hanoi Graphs.
Electron. J. Comb., 2014

2013
The Tower of Hanoi - Myths and Maths.
Birkhäuser, ISBN: 978-3-0348-0236-9, 2013

2012
The Average Eccentricity of Sierpiński Graphs.
Graphs Comb., 2012

Coloring Hanoi and Sierpiński graphs.
Discret. Math., 2012

2009
A mathematical model and a computer tool for the Tower of Hanoi and Tower of London puzzles.
Inf. Sci., 2009

2005
Metric properties of the Tower of Hanoi graphs and Stern's diatomic sequence.
Eur. J. Comb., 2005

1992
Shortest paths between regular states of the Tower of Hanoi.
Inf. Sci., 1992

1989
An iterative algorithm for the Tower of Hanoi with four pegs.
Computing, 1989


  Loading...