Ananya Sai

Orcid: 0000-0002-1953-6214

According to our database1, Ananya Sai authored at least 12 papers between 2018 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
Closing the Gap in the Trade-off between Fair Representations and Accuracy.
CoRR, 2024

How Good is Zero-Shot MT Evaluation for Low Resource Indian Languages?
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, 2024

2023
A Survey of Evaluation Metrics Used for NLG Systems.
ACM Comput. Surv., 2023

BiPhone: Modeling Inter Language Phonetic Influences in Text.
CoRR, 2023

Bi-Phone: Modeling Inter Language Phonetic Influences in Text.
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2023

IndicMT Eval: A Dataset to Meta-Evaluate Machine Translation Metrics for Indian Languages.
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2023

2021
NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
CoRR, 2021

Perturbation CheckLists for Evaluating NLG Evaluation Metrics.
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021

2020
Improving Dialog Evaluation with a Multi-reference Adversarial Dataset and Large Scale Pretraining.
Trans. Assoc. Comput. Linguistics, 2020

2019
Frustratingly Poor Performance of Reading Comprehension Models on Non-adversarial Examples.
CoRR, 2019

Re-Evaluating ADEM: A Deeper Look at Scoring Dialogue Responses.
Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, 2019

2018
ElimiNet: A Model for Eliminating Options for Reading Comprehension with Multiple Choice Questions.
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018


  Loading...