Alessandro Montinaro

Orcid: 0000-0002-6489-044X

According to our database1, Alessandro Montinaro authored at least 15 papers between 2007 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Designs with a simple automorphism group.
Finite Fields Their Appl., 2024

Flag-transitive, point-imprimitive symmetric 2-(v,k,λ) designs with k>λ(λ-3)/2.
Discret. Math., 2024

2023
A classification of flag-transitive 2-(<i>k</i><sup>2</sup>,<i>k</i>,<i>λ</i>) designs with <i>λ</i>|<i>k</i>.
J. Comb. Theory A, July, 2023

Classification of the non-trivial 2-(<i>k</i><sup>2</sup>,<i>k</i>,<i>λ</i>) designs, with <i>λ</i>|<i>k</i>, admitting a flag-transitive almost simple automorphism group.
J. Comb. Theory A, April, 2023

2019
A new characterization of the desarguesian and the Figueroa plane.
Finite Fields Their Appl., 2019

2017
On the rigidity of the Figueroa replacement in PG(2, q 3).
Comb., 2017

2015
2-(v, k, 1) Designs with a point-primitive rank 3 automorphism group of affine type.
Des. Codes Cryptogr., 2015

2013
On PGL(2, q)-invariant unitals embedded in Desarguesian or in Hughes planes.
Finite Fields Their Appl., 2013

An infinite class of 2-designs with <i>λ</i>=1λ=1 containing a <i>P</i><i>S</i><i>U</i>(3, <i>q</i>)PSU(3, q)-invariant oval.
Discret. Math., 2013

2011
Transitive groups on the line at infinity of a finite affine plane.
Finite Fields Their Appl., 2011

2008
Two-transitive groups on a hyperbolic unital.
J. Comb. Theory A, 2008

Coset switching in parallelisms.
Finite Fields Their Appl., 2008

On the Ree Unital.
Des. Codes Cryptogr., 2008

2007
Large 2-transitive arcs.
J. Comb. Theory A, 2007

Translation planes of order q<sup>2</sup> admitting a two-transitive orbit of length q+1 on the line at infinity.
Des. Codes Cryptogr., 2007


  Loading...