Alejandro J. Rodríguez-Luis

Orcid: 0000-0002-9959-0789

According to our database1, Alejandro J. Rodríguez-Luis authored at least 29 papers between 2000 and 2022.

Collaborative distances:
  • Dijkstra number2 of six.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2022
Double-zero degeneracy and heteroclinic cycles in a perturbation of the Lorenz system.
Commun. Nonlinear Sci. Numer. Simul., 2022

Study of a homoclinic canard explosion from a degenerate center.
Appl. Math. Lett., 2022

2021
High-Order Approximation of Heteroclinic Bifurcations in Truncated 2D-Normal Forms for the Generic Cases of Hopf-Zero and Nonresonant Double Hopf Singularities.
SIAM J. Appl. Dyn. Syst., 2021

2020
High-Order Analysis of Canard Explosion in the Brusselator Equations.
Int. J. Bifurc. Chaos, 2020

High-Order Analysis of Global Bifurcations in a Codimension-Three Takens-Bogdanov Singularity in Reversible Systems.
Int. J. Bifurc. Chaos, 2020

Computation of all the coefficients for the global connections in the Z2-symmetric Takens-Bogdanov normal forms.
Commun. Nonlinear Sci. Numer. Simul., 2020

Asymptotic expansions for a family of non-generic canards using parametric representation.
Appl. Math. Lett., 2020

Analytical approximation of cuspidal loops using a nonlinear time transformation method.
Appl. Math. Comput., 2020

2019
Study of a simple 3D quadratic system with homoclinic flip bifurcations of inward twist case C<sub>in</sub>.
Commun. Nonlinear Sci. Numer. Simul., 2019

2016
Superluminal periodic orbits in the Lorenz system.
Commun. Nonlinear Sci. Numer. Simul., 2016

Takens-Bogdanov bifurcations of equilibria and periodic orbits in the Lorenz system.
Commun. Nonlinear Sci. Numer. Simul., 2016

2015
Analysis of the T-point-Hopf bifurcation in the Lorenz system.
Commun. Nonlinear Sci. Numer. Simul., 2015

2014
Centers on center manifolds in the Lorenz, Chen and Lü systems.
Commun. Nonlinear Sci. Numer. Simul., 2014

Comment on "A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family", P. Yu, X.X. Liao, S.L. Xie, Y.L. Fu [Commun Nonlinear Sci Numer Simulat 14 (2009) 2886-2896].
Commun. Nonlinear Sci. Numer. Simul., 2014

Comment on "Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems" [Appl. Math. Comput. 218 (2012) 11859-11870].
Appl. Math. Comput., 2014

2012
Homoclinic Interactions Near a Triple-Zero Degeneracy in Chua's equation.
Int. J. Bifurc. Chaos, 2012

2011
Hopf bifurcations and their Degeneracies in Chua's equation.
Int. J. Bifurc. Chaos, 2011

2010
Analysis of the T-Point-Hopf bifurcation with Z<sub>2</sub>-Symmetry: Application to Chua's equation.
Int. J. Bifurc. Chaos, 2010

2007
Resonances of Periodic orbits in RÖssler System in Presence of a Triple-Zero bifurcation.
Int. J. Bifurc. Chaos, 2007

2006
Open-to-Closed Curves of saddle-Node bifurcations of Periodic orbits Near a Nontransversal T-Point in Chua's equation.
Int. J. Bifurc. Chaos, 2006

2005
Multiparametric bifurcations in an enzyme-catalyzed Reaction Model.
Int. J. Bifurc. Chaos, 2005

Homoclinic Connections Near a Belyakov Point in Chua's equation.
Int. J. Bifurc. Chaos, 2005

2004
Bi-spiraling homoclinic Curves around a T-Point in Chua's equation.
Int. J. Bifurc. Chaos, 2004

2003
Closed Curves of Global bifurcations in Chua's equation: a Mechanism for their Formation.
Int. J. Bifurc. Chaos, 2003

Some Results on Chua's equation Near a Triple-Zero Linear Degeneracy.
Int. J. Bifurc. Chaos, 2003

2002
A Note on the Triple-Zero Linear Degeneracy: Normal Forms, Dynamical and bifurcation Behaviors of an Unfolding.
Int. J. Bifurc. Chaos, 2002

2001
Takens-Bogdanov bifurcations of periodic orbits and Arnold's Tongues in a Three-Dimensional Electronic Model.
Int. J. Bifurc. Chaos, 2001

2000
Analytical Prediction of the Two First Period-Doublings in a Three-Dimensional System.
Int. J. Bifurc. Chaos, 2000

On the Hopf-Pitchfork bifurcation in the Chua's equation.
Int. J. Bifurc. Chaos, 2000


  Loading...