A. J. van Zanten

According to our database1, A. J. van Zanten authored at least 26 papers between 1982 and 2019.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2019
Primitive idempotent tables of cyclic and constacyclic codes.
Des. Codes Cryptogr., 2019

2015
Generalized residue and t-residue codes and their idempotent generators.
Des. Codes Cryptogr., 2015

2008
A construction of Gray codes inducing complete graphs.
Discret. Math., 2008

Sets of disjoint snakes based on a Reed-Muller code and covering the hypercube.
Des. Codes Cryptogr., 2008

2006
Balanced Maximum Counting Sequences.
IEEE Trans. Inf. Theory, 2006

2005
On the Construction of Linear <i>q</i>-ary Lexicodes.
Des. Codes Cryptogr., 2005

2004
Binary self-dual codes with automorphisms of composite order.
IEEE Trans. Inf. Theory, 2004

2003
The separability of standard cyclic N-ary Gray codes.
IEEE Trans. Inf. Theory, 2003

2002
Vertex Partitions of Hypercubes into Symmetric Snakes.
Electron. Notes Discret. Math., 2002

2001
Cyclic distance-preserving codes on a constant-weight basis.
Discret. Appl. Math., 2001

1999
Construction of Certain Cyclic Distance-Preserving Codes Having Linear-Algebraic Characteristics.
Des. Codes Cryptogr., 1999

1998
Cyclonomial Number Systems and the Ranking of Lexicographically Ordered Constant-Sum Codes.
Ars Comb., 1998

1997
Lexicographic Order and Linearity.
Des. Codes Cryptogr., 1997

1995
The ranking problem of a Gray code for compositions.
Ars Comb., 1995

1993
Minimal-change order and separability in linear codes.
IEEE Trans. Inf. Theory, 1993

1991
Index system and separability of constant weight Gray codes.
IEEE Trans. Inf. Theory, 1991

An iterative optimal algorithm for the generalized tower of hanoi problem.
Int. J. Comput. Math., 1991

1990
The complexity of an optimal algorithm for the generalized tower of hanoi problem.
Int. J. Comput. Math., 1990

1989
A short proof of a theorem of bannai and ito.
Discret. Math., 1989

On the existence of certain generalized Moore geometries, V.
Discret. Math., 1989

1987
The degree of the eigenvalues of generalized Moore geometries.
Discret. Math., 1987

1986
On the existence of certain generalized moore geometries (Part IV).
Discret. Math., 1986

On the existence of certain generalized Moore geometries, part III.
Discret. Math., 1986

1984
On the existence of certain generalized Moore geometries, part II.
Discret. Math., 1984

On the existence of certain generalized Moore geometries, part I.
Discret. Math., 1984

1982
On the existence of certain distance-regular graphs.
J. Comb. Theory B, 1982


  Loading...